

D3R GC4:

On-the-fly sampling of macrocycle conformations during docking to BACE-1

Diogo Santos-Martins, Jérôme Eberhardt, Giulia Bianco, Leonardo Solis-Vasquez, Francesca Alessandra Ambrosio, Andreas Koch Stefano Forli

> Department of Integrative Structural and Computational Biology The Scripps Research Institute, La Jolla, California, USA

> > D3R Workshop, La Jolla, August 22th 2019

The team

Diogo Santos-Martins

Jérôme Eberhardt

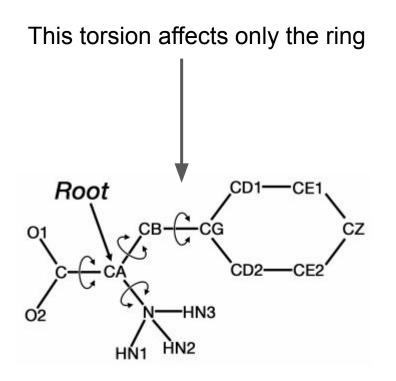
Leonardo Solis-Vasquez

Andreas Koch

Stefano Forli

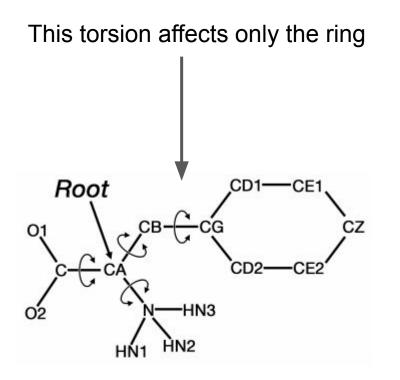
Giulia Bianco

Francesca Ambrosio

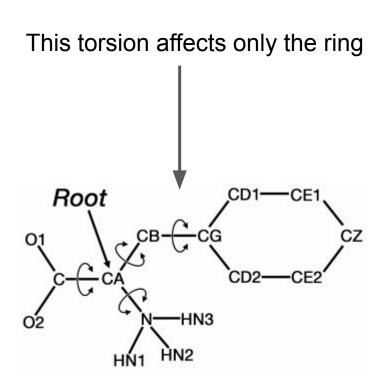

Macrocycle flexibility model for docking

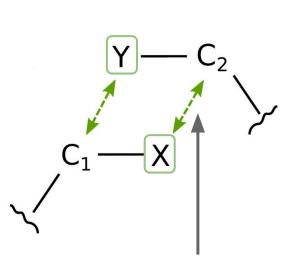
Capture binding pocket variability using multiple receptor conformations

Application of AutoDock-GPU (OpenCL, gradient-based local search)


Limitations of the ligand flexibility representation

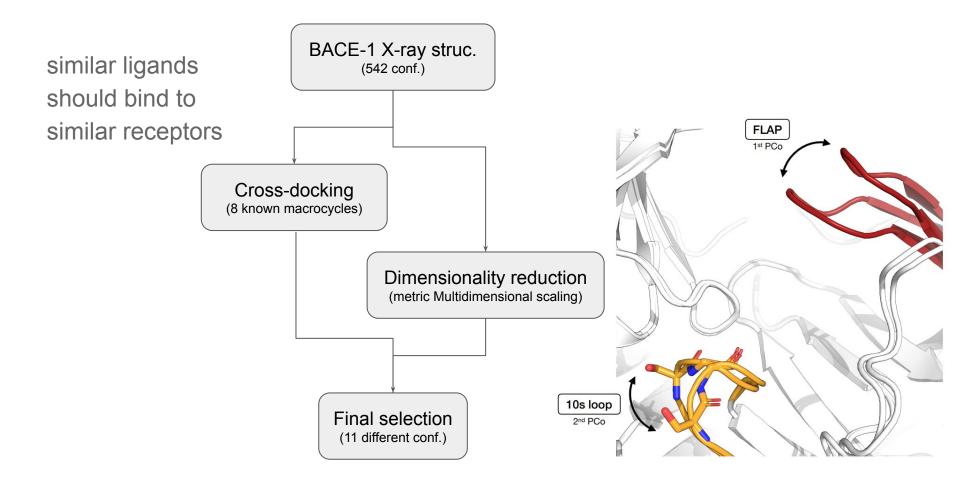
Rotatable bonds are independent from each other and rotate atoms downstream from the "root"

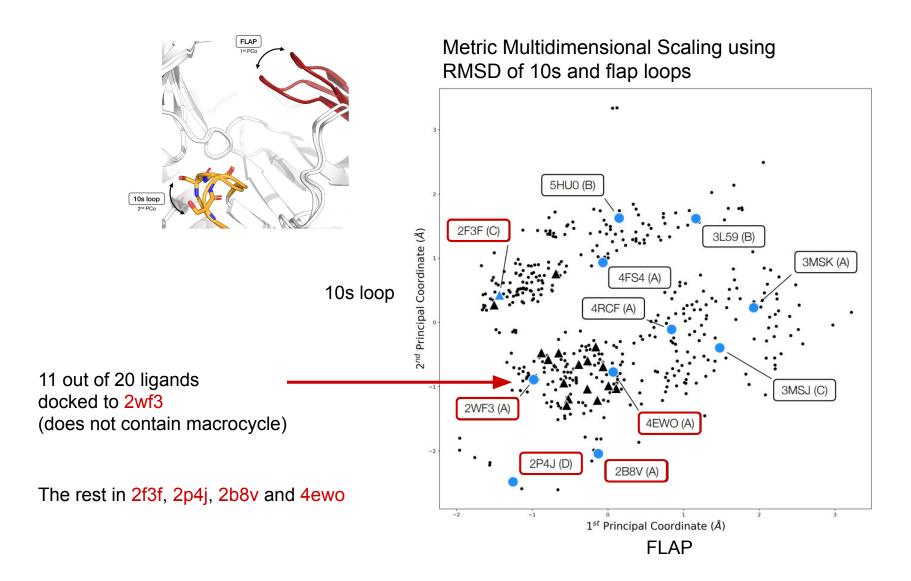

Limitations of the ligand flexibility representation


Rotatable bonds are independent from each other and rotate atoms downstream from the "root"

For macrocycles, rotatable bonds must be perturbed in a concerted way

Macrocycles are modeled in an open state and closed during docking




Linear attractive potentials (50 kcal / mol / Å)

Forli, Botta, J.Chem.Inf.Mod (2007)

Selection of representative protein conformations

Top poses docked in similar receptor conformations

Accelerating AutoDock4 on GPU

https://github.com/ccsb-scripps/AutoDock-GPU

Scoring function evaluation steps:

50x - 200x faster (Solis-Wets)

10x - 50x faster (ADADELTA gradient-based) (...but less evals required -> more accurate)

search	mean RMSD (Å)	N < 2 Å
SW	8.49	1 / 20
ADA	1.52	18 / 20

Overall performance comparable to Vina on 8 cores. (Vina has a simpler scoring function)

In collaboration with Leonardo Solis-Vasquez and Andreas Koch from TU Darmstadt, Germany

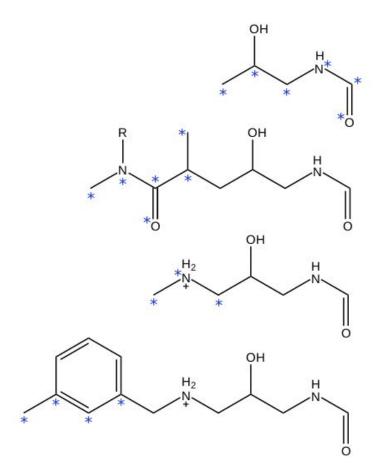
Each submission focused on a different aspect of docking

Standard dockings

- scoring function only
- post-processing filter & visual inspection (based on known ligands)

Modified dockings

- biased docking potential (known interactions)
- hydrated docking

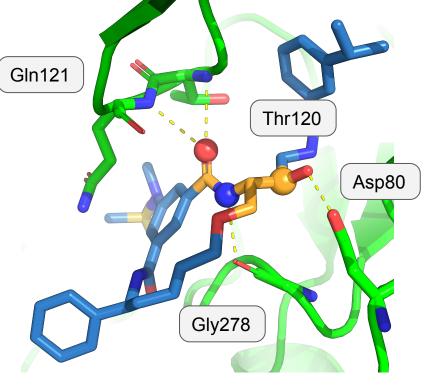

Using existing ligands as templates to filter poses

filters	mean RMSD (Å)	N < 2 Å
No	2.35	12 / 20
Auto	1.56	18 / 20
Visual	1.29	20 / 20

Dry receptor (Stage 1a)

With X-ray water (Stage 1b)

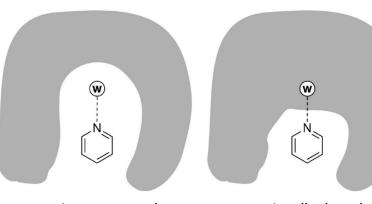
filters	mean RMSD (Å)	N < 2 Å
No	1.52	18 / 20
Auto	1.12	19 / 20


Docked poses that do not overlap with known binding modes are excluded

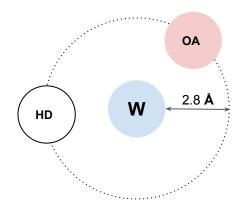
Using known binding modes to steer ligands to correct position

Distance-dependent penalty:

$$P = \begin{cases} 0, & \text{if } r \le 1.2 \text{ Å} \\ 10^5 \times r, & \text{otherwise} \end{cases}$$


bias	mean RMSD (Å)	N < 2 Å
No	1.36	19
Yes	1.13	20

BACE-1 in complex with a macrocycle inhibitor (PDB ID: 4dpf)


X-ray waters were crucial for pose prediction

Ligand hydration ("hydrated docking", predicted on the fly) Forli *et al.* J. Med. Chem. 2012 Receptor hydration (x-ray waters)

water conserved

water displaced

spherical HB don/acc water model

X-Ray water	hydrated lig.	mean RMSD (Å)	N < 2 Å
No	No	2.96	8
No	Yes	2.83	7
Yes	No	1.36 (1.52)	19 (18)
Yes	Yes	1.31	19

Ranking 154 ligands by affinity

MM/GBSA performed comparably to docking scores (Kendall Tau ~0.2)

In collaboration with:

Sukanya Sasmal, Léa El Khoury, David Mobley

UC Irvine

There will be a poster by Sukanya

Conclusions

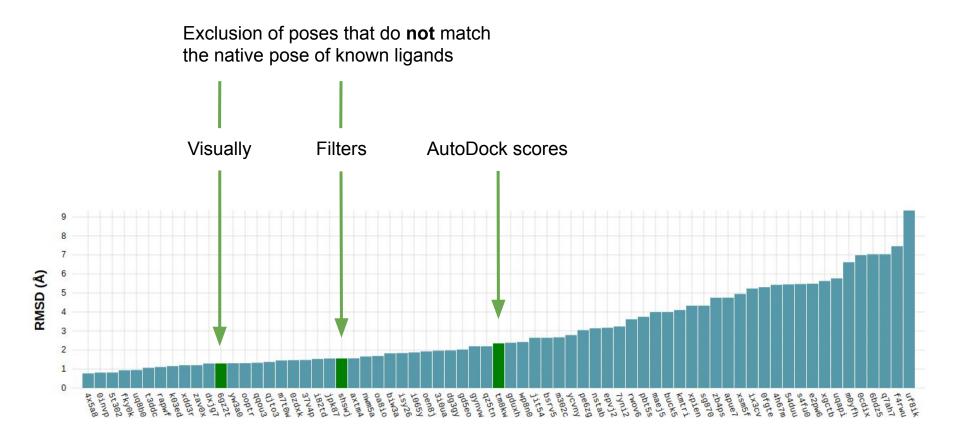
Gradient based local search: much better search performance

X-ray waters: very important (...but hard to model)

Receptor conformation: important but not critical (at least for these ligands)

Pose filters and bias: beneficial in Stage 1a (without waters)

Pose ranking: very hard (with both scoring function and MM/GBSA)


Acknowledgements

National Institutes of Health R01-GM069832 (DSM, JE, SF) U54-GM103368 (GB)

German Academic Exchange Service (DAAD) Peruvian National Program for Scholarships and Educational Loans (PRONABEC) (LSV, AK)

Diogo Santos-Martins Jérôme Eberhardt Giulia Bianco Leonardo Solis-Vasquez Francesca Alessandra Ambrosio Andreas Koch Stefano Forli Sukanya Sasmal Léa El Khoury David Mobley

Ranking in Stage 1a

Stage 1a submissions